Highly degenerate quadratic forms over F2

نویسنده

  • Robert W. Fitzgerald
چکیده

Let K be a finite extension of F2. We consider quadratic forms written as the trace of xR(x), where R(x) is a linearized polynomial. We determine the K and R(x) where the form has a radical of codimension 2. This is applied to constructing maximal Artin-Schreier curves. Set F = F2 and let K = F2k be an extension of degree k. Let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Incompressibility of Generic Orthogonal Grassmannians

Given a non-degenerate quadratic form over a field such that its maximal orthogonal grassmannian is 2-incompressible (a condition satisfied for generic quadratic forms of arbitrary dimension), we apply the theory of upper motives to show that all other orthogonal grassmannians of this quadratic form are 2-incompressible. This computes the canonical 2-dimension of any projective homogeneous vari...

متن کامل

Pencils of quadratic forms over finite fields

A formula for the number of common zeros of a non-degenerate pencil of quadratic forms is given. This is applied to pencils which count binary strings with an even number of 1’s prescribed distances apart.

متن کامل

Around 16 - Dimensional Quadratic Forms in I

We determine the indexes of all orthogonal Grassmannians of a generic 16dimensional quadratic form in I q . This is applied to show that the 3-Pfister number of the form is ≥ 4. Other consequences are: a new and characteristic-free proof of a recent result by Chernousov–Merkurjev on proper subforms in I q (originally available in characteristic 0) as well as a new and characteristic-free proof ...

متن کامل

The Genus of a Quadratic Form

Our basic problem is to answer the question : when are two quadratic forms equivalent by a rational or integral change of basis? We shall temporarily suppose that all our forms are non-degenerate (i.e., have non-zero determinant), although degenerate forms really give no trouble, The answer in the rational case is given by the celebrated HasseMinkowski theorem, which is usually stated in the form:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007